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Abstract—Let B be a set of blue points and R be a set of red
points with total size n in the plane. In this paper, we propose
a worst-case optimal O(n3) time algorithm to compute all axis-
aligned L-shapes that contain maximum number of blue points
without containing any red points. We also study this problem
for arbitrarily oriented L-shapes, and present an O(n4α(n)) time
algorithm to find these general L-shapes, where α(n) is the
inverse of the Ackermann function.

Index Terms—computational geometry, separability, point sets

I. Introduction

Arising from the facility location applications, a vast area of
research in computational geometry has focused on covering
problems in which given a set P of n points in the plane,
the goal is to find the minimum size geometric shape that
covers all the points. These problems are broadly studied for
different shapes (covers) such as a circle [8], rectangle [14],
and an L-shape [4]. Importance of studying covering problems
has made them more realistic through years of research. In real
applications not all points in P are of the same type. There can
exist desirable and undesirable points in the input where cov-
ering the undesirable points together with the desirable ones is
harmful. This discrimination in the input is often modeled by
assigning different colors to points: blue to model the desirable
points and red to model the undesirable ones. The covering
problem is now treated as a separability problem in which
the goal is to use a predefined geometric shape (separator)
to cover blue points without covering any red points. Ideally,
separating all the blue points from the red points is desired.
Let complete separability refer to this category of separability
problems. Complete separability is studied for separators such
as a line [8], circle [9], rectangle [15], and an L-shape [13].
See [11] for a thorough study.

Although complete separability is the most natural type
of separability, it is not always possible. This issue and
applications in pattern recognition and data analysis [7] have
led to the study of maximum separability in which the goal
is to separate most of the blue points from the red points.
Maximum separability has been studied for separators such
as a convex polygon [5], circle [2], and rectangle [3], [12].
Considering other types of separators, especially the ones pre-
viously studied in the other category of separability problem
is left for further research [2].

Thus, given a set R of red points and a set B of blue points

with total size n in the plane, in this paper we study maximum
separability of B and R by using L-shaped separators. First
we study a basic version of this problem where L-shapes
are axis-aligned. We give an O(n3) time algorithm to solve
this problem and show that the proposed algorithm is worst-
case optimal. We use this algorithm as a basis to design an
O(n4α(n)) time algorithm to solve maximum separability of
B and R by using arbitrarily oriented L-shapes, where α(n)
is the slow-growing inverse of the Ackermann function.

II. Preliminaries

We start by focusing on some definitions and notations. We
define an axis-aligned L-shape to be an axis-aligned rectangle
M that has lost an axis-aligned M ′ from its top-right corner,
where M ′ ( M . Then an L-shape with orientation θ is an
axis-aligned L-shape that has been rotated in counterclockwise
direction over an angle θ, where θ ∈ [0, 2π). Given point
sets B and R with total size n in the plane, let P denote
the bounding box of B ∪ R in the current coordinate frame.
Further, for a point p, let xp and yp respectively denote the
x- and y-coordinate of p. We wish to find L-shapes in P that
contain maximum number of blue points without containing
any red points. We call these L-shapes maximum blue L-shapes
or MBLs for short. An MBL can be enlarged to have each
side touched by a red point or the boundary of P . Once we
design an algorithm to compute MBLs that have a red point
on each side, the algorithm can be easily modified to handle
the cases where MBLs have some sides coincided with the
boundary of P , as discussed in Section III. So for now, we
focus on finding MBLs with a red point on each side.

Starting from the top side of a potential MBL or PMBL
for short, and traversing its boundary in clockwise order, let
tp,mid− rt,mid− tp, rt, btm, and lt respectively denote the
red point on the top, middle-right, middle-top, right, bottom,
and left side of that PMBL. See Fig. 1(a). Thus, a trivial
solution for computing axis-aligned MBLs is to choose the six
red points defining the boundary of a PMBL, check whether
this PMBL contains a red point inside, count the number
of blue points it covers, and repeat the procedure to compute
the actual MBLs by comparing the number of blue points
in PMBLs. This leads to an O(n7)-time solution for this
problem. However, next we show how to compute all axis-
aligned MBLs in the worst-case optimal O(n3) time.
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III. Finding axis-aligned MBLs

To compute MBLs in the axis-aligned case, the main idea
is to define a skeleton for an L-shape, and then fatten this
skeleton to get the corresponding PMBLs. Details are as
follows. Our algorithm has a pre-processing stage where we
sort the points in B∪R according to the x- and y-coordinate.
Then we compute the so called skeleton of a PMBL. Recall
that a PMBL has a red point on each side, where tp is the
red point on the top, and rt is the red point on the right
side. To define the skeleton of a PMBL we draw two axis-
aligned rays, one downward from tp and the other leftward
from rt until they meet. The concatenation of the two resultant
axis-aligned segments is called the skeleton of the PMBL
having tp on the top and rt on the right side. The point where
the two segments of the skeleton meet is called the ankle.
See Fig. 1(a). So, in the body of the algorithm we choose
two arbitrary red points, one in the role of tp and the other
in the role of rt. Having tp and rt, and consequently the
skeleton defined by them, now we describe how to fatten
this skeleton to find the corresponding PMBLs. That is,
to find the red points defining the corresponding PMBLs.
Consider the axis-aligned rectangle with the upper-right corner
(xrt, ytp) and the lower-left corner coincided with the lower-
left corner of P . Let P ′ denote this rectangle. Drawing axis-
aligned rays from tp and rt, we can partition P ′ into four
rectangular regions: R1 (the upper-right region), R2 (the
upper-left region), R3 (the lower-left region), and R4 (the
lower-right region). See Fig. 1(b). By Ri, where 1 ≤ i ≤ 4,
we mean the open region, and we denote the boundary of Ri

by ∂Ri. We can restrict the search (for finding the remaining
red points defining the PMBLs with the specified skeleton)
to these regions.

Finding mid−rt and mid−tp red points:R1 is the region
we can find mid−rt and mid− tp. The point mid−rt is the
red point in R1 with the minimum x-coordinate, and mid −
tp is the red point in R1 with the minimum y-coordinate.
See Fig. 1(b). To find these red points we use the segment-
dragging algorithm [6], once with the vertical segment of the
skeleton, proceeding rightward until it reaches a red point in
R1 (to find mid− rt), and the other time with the horizontal
segment of the skeleton, proceeding upward until it reaches a
red point in R1 (to find mid−tp). If no such points are found,
we take (xrt, ytp) as the virtual mid − rt and mid − tp. So
by an O(n log n) pre-processing time, we can find mid − rt
and mid− tp in O(log n) time [6].

Finding lt and btm red points: To find lt and btm in the
regions R2 and R4, we follow a similar segment-dragging
approach. To find lt in R2, we drag the vertical segment of
the skeleton leftward until it reaches a red point in R2 or
the boundary of P ′. We denote this red point by far − lt.
Moreover, to find btm in R4, we drag the horizontal segment
of the skeleton downward until it reaches a red point in R4

or the boundary of P ′. We denote this red point by far −
btm. Having found far − lt and far − btm, we shrink P ′
to have far − lt on the left and far − btm on the bottom

side. This results in shrinking the regions R2, R3, and R4

as well. From now on, by P ′ we mean the shrunk P ′. Note
that far − lt and far − btm are not the only red points that
can play the role of lt and btm. This is due to the maximal
red points in R3. We say that a red point r ∈ R3 is maximal
if there does not exist another red point r∗ ∈ R3 such that
xr∗ > xr and yr∗ > yr. Connecting the maximal red points
in R3 we get a staircase which we call the critical-staircase.
See Fig. 1(b). The critical-staircase has O(n) steps, where
extension of each of these steps defines a PMBL with the
specified skeleton. By extension of a step we mean drawing a
vertical ray upward from the maximal red point on the vertical
segment of the step, and drawing a horizontal ray rightward
from the maximal red point on the horizontal segment of the
step, until these rays touch ∂P ′ (the boundary of P ′). Thus,
by fattening a specific skeleton we get O(n) corresponding
PMBLs. What is left is counting the number of blue points
in these PMBLs. The steps in the critical-staircase can be
ordered from the topmost to the bottommost, and so are the
corresponding PMBLs. Let PMBLi denote the PMBL that
is constructed by extension of the i-th step of the critical-
staircase. The first PMBL (PMBL1) has far − lt on the
left side and the topmost red point of the critical-staircase on
the bottom side while the last PMBL has the bottommost red
point of the critical-staircase on the left side and far−btm on
the bottom side. See Fig. 1(c). Let |S| denote the number of
blue points in shape S. Next we describe the relation between
|PMBLi| and |PMBLi+1|. Drawing vertical rays upward
and horizontal rays rightward from the maximal red points
on the critical-staircase until they reach ∂P ′, we create O(n)
vertical and horizontal slabs. Assume that vslabi and hslabi
respectively denotes the i-th vertical slab from the left and the
i-th horizontal slab from the top. We have: |PMBLi+1| =
|PMBLi| − |vslabi|+ |hslabi+1|. See Fig. 1(c).

Hence, to count the number of blue points in the PMBLs,
first we compute |PMBL1|, and then follow an update
procedure to compute the number of blue points in the
remaining PMBLs. We compute |PMBL1| in O(n) time.
To follow the update procedure we use two orthogonal sweeps
moving sequentially slab by slab: a vertical sweep line passing
through far−lt proceeding rightward, and a horizontal sweep
line passing through the topmost maximal red point in R3

proceeding downward. We use these sweeps to count the
number of blue point in the vertical and horizontal slabs, and
use these numbers to update |PMBLi| to get |PMBLi+1|,
for 1 ≤ i ≤ n− 1. We continue this procedure until reaching
the last PMBL. This takes O(n) time per skeleton. Having
finished the counting procedure, we achieve the MBLs with
the specified skeleton.

It is time to show how to handle the cases where PMBLs
have the top side or the right side coincided with ∂P . We
handle these cases as follows. If P has no red points inside,
then it is the solution itself. Otherwise, from the red points
inside P we draw axis-aligned rays upward and rightward until
the rays reach ∂P . This partitions the top side and the right
side of P into O(n) intervals. We consider a virtual red point



in each of these intervals, and handle these cases similarly to
the main algorithm described. Thus, we can assume that each
PMBL has a red point (either real or virtual) on each side.

Theorem 1. Let B be a set of blue points and R be a set of red
points, with total size n in the plane. Then, we can compute all
axis-aligned MBLs in O(n3) time and O(n) storage.

Proof: The pre-processing stage of the algorithm takes
O(n log n) time and O(n) storage. Then, in the body of the
algorithm we choose two arbitrary red points and compute
the corresponding skeleton. This results in O(n2) skeleton.
Fattening each skeleton to achieve the corresponding PMBLs
and counting the number of blue points in these PMBLs
by using two orthogonal sweeps take O(n) time. Thus, the
total time complexity of the algorithm is O(n3). During the
algorithm we update |MBL| which has been discovered so
far such that by the end of the algorithm the actual |MBL| is
available. Having |MBL| available, we can report all MBLs
in B ∪R in O(n3) time, using O(n) storage.

The lower bound. We show that there exist point sets that
admit Ω(n3) MBLs. First we consider two red points in the
role of tp and rt. These two red points partition P ′ into the
regions R1, R2, R3, and R4, as described earlier. We put
(n − 6)/4 red points in R1 on a staircase structure between
tp and rt. We place far − lt in R2 so that it lies above rt
and below the bottommost red point on the staircase structure
above rt. Similarly, we place far− btm in R4 so that it lies
to the right of tp and to the left of the topmost red point on
the staircase structure below tp. Having specified the location
of far − lt and far − btm, we put (n − 6)/4 red points on
a staircase structure in R3 (playing the role of the critical-
staircase). Finally, we place a single blue point in each step
of this critical-staircase as well as in each step of the staircase
structure in R1. See Fig. 2(a). This way, having specified tp
and rt, we get Θ(n) MBLs, where |MBL| = 3. Further, we
have Θ(n) choices for tp (the red points below tp that lie on
the staircase structure in R1) and also Θ(n) choices for rt (the
red points to the left of rt that lie on the staircase structure
in R1), where for each of these Θ(n2) choices we have Θ(n)
MBLs with three blue points inside.

Theorem 2. Let B be a set of blue points and R be a set of
red points, with total size n in the plane. Then, computing all
axis-aligned MBLs requires Ω(n3) time in the worst-case.

IV. Finding arbitrarily oriented MBLs

To compute arbitrarily oriented MBLs, first we compute
the axis-aligned skeleton and the corresponding PMBLs for
any pair of red points in the role of (tp, rt), using the algorithm
in Section III. With a slight difference, in this section we
consider |PMBLi| := |PMBLi| + |C|, where 1 ≤ i ≤ n,
C is the common region shared among all PMBLs defined
by this tp and rt, and PMBLi := PMBLi\C. See Fig. 2(b).
This decomposition helps us for a faster update of |PMBL|s
in Section IV-A. To compute arbitrarily oriented PMBLs
having tp on the top side and rt on the right side, we use
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Fig. 1. (a) A PMBL and the corresponding skeleton. The skeleton is
shown dashed. (b) Finding the PMBLs corresponding to a specific skeleton.
(c) Illustrating the relation between |PMBLi| and |PMBLi+1|.

a rotational sweep. We can think of this sweep as rotating
the coordinate frame once in counterclockwise and the other
time in clockwise direction, and handle the events that arise
during the sweep. This is to cover all arbitrarily oriented
PMBLs with the specified tp and rt. We focus on rotating the
coordinate frame in counterclockwise direction. Then handling
the rotation in clockwise direction is similar. Thus, we increase
θ (the angle that the current positive x-axis makes with the
original x-axis) from 0 to 2π, and handle the events (changes
in the PMBLs) that occur while this increase (rotational
sweep). Generally, these events happen when the order of two
points changes. Hence, there are O(n2) events in total and
they will be studied in details in Section IV-A.

There are some points to consider before getting to events.
As the rotational sweep proceeds we keep the points in B∪R
sorted. To get that, in the pre-processing stage we sort the
points according to the original x- and y-coordinate. During
the rotational sweep, the order of points needs to be updated.
The number of changes in the order of points is O(n2).
Thus, in the pre-processing stage we keep the O(n2) angles
defined by pairs of points sorted in O(n2 log n) time and
O(n2) storage. Having this available, during the sweep we can
update the order of points in O(1) time. Now let CHR−in be
the convex hull of red points in R1, and CHR−left be the
convex hull of red points to the left of far− lt and below tp.
We store these hulls in a dynamic convex hull data structure
that maintains an explicit representation of the hull [10]. This
takes O(n log2 n) time. During the rotation we also keep these
convex hulls up to date. We define two variables: θmax (storing
the orientation of MBL) and |Cmax| (storing the maximum
number of blue points in C while rotation). At the start of the
sweep, we set θmax := 0 and |Cmax| := |C|. These variables
get updated during the algorithm.

We have the O(n2) sorted angles defined by pairs of points
in the pre-processing stage. Then, we traverse these angles in
order and detect the events corresponding to them. Let θk be
the k−th angle in the list of sorted angles. We detect the type



of θk to handle as follows.
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Fig. 2. (a) The lower bound on the number of axis-aligned MBLs. The
shaded area shows a sample axis-aligned MBL. (b) Decomposing PMBLi:
PMBLi is the light gray while C is the dark gray region.

A. Events

TP -touching event: This event occurs when the line
through tp touches a point while rotation. We can recognize
this event in O(1) time, and there are O(n) number of them.
This event is of two types: TPH and TPV .
TPH: This type of TP -touching event occurs when the

horizontal line through tp touches a point while rotation. Let
this point be a red one, and r denote it. If r ∈ ∂R1 then we
update CHR−in in O(log2(n)) time [10]. Further, if r ∈ ∂R1

and r is to the left of mid−rt then r will play the role of the
new mid−rt. So we update mid−rt, C and consequently |C|
in O(n) time. See Fig. 3(a). If r is to the left of tp, then we
update CHR−left [10]. In this case if r is the same as far−lt
(as in Fig. 3(b)) then it leavesR2, and a new far−lt should be
computed. So we update far− lt and consequently the whole
structure (PMBLs and the number of blue points in them).
This takes O(n) time. On the other hand, let the horizontal
line through tp touches a blue point, and b denote this blue
point. If b ∈ ∂R1 and b is to the left mid−rt (as in Fig. 3(c))
then b enters C. Thus, we update |C|. If |C| > |Cmax| then we
set |Cmax| = |C| and θmax = θk. This takes O(1) time. If b ∈
∂R2 then b leaves R2 and some of PMBLs. See Fig. 3(d).
To find these PMBLs, by a binary search on the maximal
red points in R3 we find the vertical slab which b falls in,
in O(log n) time. Let vslabi denote this slab. Then moving
top-down we need to update |PMBL1| until |PMBLi|. To
this aim we use a similar approach to Section III. This way
the update takes O(n) time.
TPV : This event occurs when the vertical line through tp

touches a point while rotation. Let this point be a red point
r. If r is the same as far − btm (as in Fig. 3(e)) then we
update far − btm and the whole structure in O(n) time. If
r is the same as mid − rt (as in Fig. 3(f)), then CHR−in
and CHR−left get updated. Moreover, we update mid − rt,
recompute C, |C| and the whole structure in O(n) time. If
|C| > |Cmax| then we set |Cmax| = |C| and θmax = θk. On
the other hand, let the vertical line through tp touches a blue
point, and b denote it. If b ∈ ∂R1 (as in Fig. 3(g)), b leaves
C. So |C| gets updated in O(1) time.

Lemma 3. The number of TP -touching events is O(n). Each

TP -touching event (either TPH or TPV ) can be recognized
in O(1) time, and handled in O(n) time.
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Fig. 3. Illustrating TP -touching events.

RT -touching event: This event occurs when the line through
rt touches a point while rotation. We can recognize this event
in O(1) time, and there are O(n) number of them. It is of two
types: RTH and RTV .
RTH: This type of RT -touching event occurs when the

horizontal line through rt touches a point while rotation. Let
this point be a red one, and r denote it. If r is the same as the
topmost maximal red point in R3 then it will play the role of
the new far − lt. So we update far − lt and consequently
the whole structure in O(n) time. See Fig. 4(a). On the other
hand, let the horizontal line through rt touches a blue point,
and b denote it. If b is in hslab1 and to the right of tp (as
in Fig. 4(b)), then it enters C. Thus, |C| gets updated in O(1)
time. If |C| > |Cmax| then we set |Cmax| = |C| and θmax = θk.
RTV : This type of RT -touching event occurs when the

vertical line through rt touches a point while rotation. Let this
point be a red one, and r denote it. If r ∈ ∂R1 then r leaves



R1. So we update CHR−in [10]. Further, if r is the same as
mid−tp (as in Fig. 4(c)), then we need to update mid−tp and
|C| as well. This takes O(n) time. If |C| > |Cmax| then we set
|Cmax| = |C| and θmax = θk. If r ∈ ∂R4 then r enters R4 as
the new far−btm. See Fig. 4(d). So we update far−btm and
consequently the whole structure in O(n) time. On the other
hand, let the vertical line through rt touches a blue point, and
b denote it. If b ∈ ∂R1 and b is below mid− tp then b leaves
C. See Fig. 4(e). Thus, we update |C|. Otherwise, if b ∈ ∂R4

then b enters R4 and some of PMBLs. See Fig. 4(f). To find
these PMBLs, by using a binary search on the maximal red
points in R3 we find the horizontal slab that b falls in. Let
hslabi be this slab. Then we update the number of blue points
in PMBLj , where i ≤ j ≤ n, in O(n) time.

Lemma 4. The number of RT -touching events is O(n). Each
RT -touching event (either RTH or RTV ) can be recognized
in O(1) time, and handled in O(n) time.

MID − RT -touching event: This event occurs when the
vertical line through mid − rt touches a specific point while
rotation. There are two types of MID−RT -touching events:
MIDR and MIDB.
MIDR: This type of event occurs when the vertical line

through mid − rt touches a red point which is the counter-
clockwise neighbor of mid − rt on CHR−in. See Fig. 5(a).
Let r denote this red point. MIDR event makes r to be the
new mid − rt. Since mid − rt and CHR−in are available,
this event can be recognized and handled in O(1) time. Note
that this event corresponds to changes in mid − rt. That is,
changes in the red point in R1 with the minimum x-coordinate
in the current coordinate frame. So for each red point r ∈ R1,
we define the function fr(θ) = xr(θ), where xr(θ) is the x-
coordinate of r in the coordinate frame that is rotated by the
angle θ in counterclockwise direction. For the rest of red points
this function is undefined. Within the angular interval [0, 2π)
the number of times that a red point r may enter or leave
R1, and consequently the number of pieces of fr(θ) is O(1).
So, over all red points we have O(n) pieces of functions. The
red point in R1 with the minimum x-coordinate is achieved by
the lower envelope of these functions. Since any two pieces of
these functions intersect in at most one point, the complexity
of their lower envelope is O(nα(n)), where α(n) is the inverse
of the Ackermann function [1]. Thus, the number of MIDR
events is O(nα(n)), and each can be recognized and handled
in O(1) time.
MIDB: This type of MID − RT -touching event occurs

when the vertical line through mid− rt touches a blue point
in R1. Let b be such a blue point. If b is above mid − rt
and below tp then b leaves C. See Fig. 5(b). Otherwise, if
b is below mid − rt and above mid − tp then b enters C.
See Fig. 5(c). Hence, according to each case we update |C|
in O(1) time. If |C| > |Cmax| then we set |Cmax| = |C| and
θmax = θk. The number of MIDB events is O(n2), and each
of them can be recognized and handled in O(1) time.

Lemma 5. Among MID −RT -touching events, the number

of MIDR events is O(nα(n)) while the number of MIDB
events is O(n2). Each of these events can be recognized and
handled in O(1) time.
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Fig. 4. Illustrating RT -touching events.
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Fig. 5. Illustrating MID −RT -touching events.

MID − TP -touching event: This event occurs when the
horizontal line through MID − TP touches a point while
rotation. It can be analyzed similar to MID − RT -touching
event, and hence further details are omitted.



FAR−LT -touching event: This event occurs when the ver-
tical line through far− lt touches a specific point (described
in the following) while rotation. This event is of two types:
FAR− LT red and FAR− LT blue.
FAR− LT red: This type of event occurs when the vertical

line through far − lt touches a red point which is the
counterclockwise neighbor of far − lt on CHR−left. Let r
be this red point. Since far− lt and CHR−left are available,
a FAR− LT red event can be recognized in O(1) time. This
event makes r to become the new far − lt. See Fig. 6(a).
This update takes O(1) time. The number of FAR− LT red

events is the number of times that far − lt gets collinear
with its counterclockwise neighbor on CHR−left. It can be
interpreted as the number of vertices on CHR−left that is
traversed while rotation. This traverse is only done from
right to left on CHR−left, and it never gets back. Although
CHR−left is updated at TP -touching events, the total number
of FAR− LT red events is still O(n).
FAR− LT blue: This type occurs when the vertical line

through far − lt touches a blue point b while rotation. If
b is above far − lt and below tp then b enters R2, vslab1
and consequently PMBL1. See Fig. 6(b). Otherwise, if b is
below far − lt and above the topmost maximal red point
in R3 then b leaves R2, vslab1 and consequently PMBL1.
See Fig. 6(c). So according to each case we update |PMBL1|.
A FAR− LT blue event can be recognized and handled in
O(1) time. The number of FAR− LT blue events is O(n2).

Lemma 6. Among FAR − LT -touching events, the num-
ber of FAR− LT red events is O(n) while the number of
FAR− LT blue events is O(n2). Each of these events can be
recognized and handled in O(1) time.

mid− tp

mid− rt
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rt

far − btm
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mid− rt
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b

rt

far − btm

mid− tp

mid− rt
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far − lt

b rt

far − btm

(a) (b)

(c)

Fig. 6. Illustrating FAR− LT -touching events.

STEP-touching event: This event occurs when a step through
the maximal red points in R3, including far − lt and far −
btm, touches a point while rotation. This event is of two types:
STEPred and STEPblue.

STEPred: This type of event occurs when a segment
through a step touches a red point while rotation. Let r be this
red point. According to whether the vertical or the horizontal
segment of this step touches r, a STEPred event makes r to be
respectively removed from or added to the maximal red points.
Hence, the balanced binary search tree that keeps the maximal
red points gets updated. Further, PMBLs get re-numbered
in O(n) time. Moreover, if the horizontal segment through
far − btm touches r, then r becomes the new far − btm.
Thus, a STEPred event can be handled in O(n) time. Similar
to in − events and out − events in [4], the number of
STEPred events is O(n). These events can be pre-computed
in O(n2) time [4]. Once they are computed, they can be
recognized in O(1) and handled in O(n) time.

Lemma 7. The number of STEPred events is O(n). They
can be computed in O(n2) time. Each of these events can be
recognized in O(1) time, and handled in O(n) time.

STEPblue: This type occurs when a segment through a step
touches a blue point b while rotation. According to whether
the vertical or the horizontal segment of this step touches b,
a STEPblue event makes b to be respectively removed from
or added to the corresponding PMBL. Hence, the number
of blue points in the corresponding PMBL gets updated in
O(1) time. The number of STEPblue events is O(n2).

Lemma 8. The number of STEPblue events is O(n2). Each
one can be recognized and handled in O(1) time.

MAXIMAL-touching event: This event occurs when the line
through a maximal red point in R3 touches a blue point while
rotation. Having numbered the maximal red points in R3 top-
down, let ri be the corresponding maximal red point and b
be the corresponding blue point. If the vertical line through
ri touches b, and b is in vslabi, then b leaves vslabi and
enters vslabi+1, and consequently PMBLi+1. Thus, |vslabi|,
|vslabi+1|, and |PMBLi+1| get updated. See Fig. 7(a). On the
other hand, if the horizontal line through ri touches b, and b is
in hslabi, then b leaves hslabi and enters hslabi+1, and con-
sequently PMBLi+1. Thus, |hslabi|, |hslabi+1|, |PMBLi|,
and |PMBLi+1| get updated. See Fig. 7(b). The update takes
O(1) time. Since maximal red points are labeled, recognizing
and handling MAXIMAL-touching events take O(1) time, and
there are O(n2) number of these events.

Lemma 9. The number of MAXIMAL-touching events is
O(n2). Each can be recognized and handled in O(1) time.

B. Algorithm

To find all arbitrarily oriented MBLs, in the pre-processing
stage we compute all O(n2) angles defined by pairs of points,
and keep them sorted. Then we sort the points in B ∪ R
according to the initial x- and y-coordinate. We set θmax := 0
and |Cmax| := |C|, and throughout the algorithm we update
these variables as well as the sorted list of points. Thus,
the pre-processing stage takes O(n2 log n) time and O(n2)
storage. Having completed the pre-processing stage, now for



any pair of red points in the role of (tp, rt) we compute the
corresponding axis-aligned PMBLs and count the number
of blue points in them in O(n) time as in Section III. We
store far − btm, far − lt and the maximal red points in R3

in a balanced binary search tree. Now we compute STEPred

events in O(n2) time as in Lemma 7. Next for the pair (tp, rt)
we start the rotational sweep. We traverse the O(n2) angles
defined by pairs of points in order, and detect the events that
arise while this sweep. At each of these angles we update
the order of points in O(1) time. Then we recognize the
events in O(1) time as described in Section IV-A, and handle
them according to their types. Let θk be the current angle to
handle. If θk is of types TP -touching, RT -touching, MIDR,
FAR− LT red, or STEPred events, then for θmax, where
θk−1 < θmax < θk, we update PMBLj , where 1 ≤ j ≤ n,
using the relation |PMBLj | := |PMBLj |+ |Cmax|. Next we
set |Cmax| = |C| and θmax = θk. This takes O(n) time, and
there are O(nα(n)) events of those types as in Lemmas 3-
7. The rest of the O(n2) angles and events can be handled
totally in O(n2) time as in Lemmas 5, 6, 8, and 9. So by an
O(n2 log n) pre-processing time and O(n2) storage, handling
each red pair (tp, rt) takes O(n2α(n)) time.

Theorem 10. Given bichromatic point sets with total size n
in the plane, we can compute all arbitrarily oriented MBLs in
O(n4α(n)) time and O(n2) storage.
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Fig. 7. Illustrating MAXIMAL-touching events.

V. Conclusion

Given a set B of blue points and a set R of red points
with total size n in the plane, in this paper we have studied
maximum separability of B and R by using L-shaped sep-
arators. We have proposed a worst-case optimal O(n3) time
algorithm to compute all axis-aligned L-shapes that contain
maximum number of blue points without containing any red
points. We have also studied this problem for arbitrarily ori-
ented L-shaped separators, and presented an O(n4α(n)) time
algorithm to find these general L-shapes. L-shaped separators
are the first non-convex separators studied in the maximum
separability problem. Considering other non-convex separators
in separability problems is left for further research.
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